If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2-10w=0
a = 2; b = -10; c = 0;
Δ = b2-4ac
Δ = -102-4·2·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-10}{2*2}=\frac{0}{4} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+10}{2*2}=\frac{20}{4} =5 $
| G(x)=1/4x^2+2 | | d²-10d+25=6 | | 3x-0=8x-7 | | 252-6x=x | | -6n+8+8n=6 | | 20d+13−12=−43 | | 9=5a+6-8a | | -b-6b=-21 | | x^2-18x+100=0 | | 9=4a-1+6a | | 19=8-6x-1 | | 3.8x-(-1-9.7x=2.6 | | 4(5x+9)-7x=62 | | 57=5x+2 | | -9f+6=-10f | | 16=4y-16 | | 3-5x=-9 | | 6/3=x/1 | | 8x2+18x–24=0 | | 13=w/3-17 | | 8y-2=39 | | h+65=2. | | (x+30)+(4x+30)+(3x+60)=360 | | 2=6x-4x+2 | | 4-5x+7x=12 | | x+11=53 | | 14+6=2(5x+3) | | -108=54-9x | | -6x-1-7x=25 | | -9−9j=-8j | | x/10=44 | | 5x+2+4x=101 |